
Dissecting and Streamlining the Interactive Loop of Mobile Cloud Gaming

Yang Li1∗, Jiaxing Qiu1∗, Hongyi Wang1, Zhenhua Li1, Feng Qian2, Jing Yang1

Hao Lin1,4, Yunhao Liu1, Bo Xiao3, Xiaokang Qin3, Tianyin Xu4

1Tsinghua University 2University of Southern California 3Ant Group 4UIUC

Abstract
With cloud-side computing and rendering, mobile cloud gam-
ing (MCG) is expected to deliver high-quality gaming experi-
ences to budget mobile devices. However, our measurement
on representative MCG platforms reveals that even under
good network conditions, all platforms exhibit high interac-
tive latency of 112–403 ms, from a user-input action to its
display response, that critically affects users’ quality of ex-
perience. Moreover, jitters in network latency often lead to
significant fluctuations in interactive latency.

In this work, we collaborate with a commercial MCG plat-
form to conduct the first in-depth analysis on the interactive
latency of cloud gaming. We identify VSync, the synchro-
nization primitive of Android graphics pipeline, to be a key
contributor to the excessive interactive latency; as many as
five VSync events are intricately invoked, which serialize the
complex graphics processing logic on both the client and
cloud sides. To address this, we design an end-to-end VSync
regulator, dubbed LoopTailor, which minimizes VSync events
by decoupling game rendering from the lengthy cloud-side
graphics pipeline and coordinating cloud game rendering di-
rectly with the client. We implement LoopTailor on the col-
laborated platform and commodity Android devices, reducing
the interactive latency (by ∼34%) to stably below 100 ms.

1 Introduction
Recent years have witnessed the emergence and prosperity of
cloud gaming for mobile games (termed mobile cloud gaming,
or MCG), which enables high-quality gaming experiences on
mid- to low-end devices. Typically, mobile games run in vir-
tualized environments (e.g., an emulator/a container) hosted
on cloud servers, and rendered frames are live-streamed over
the network to a thin client app on the user device.

Motivation. To achieve smooth gaming experiences, MCG
platforms are expected to provide users with a high media
streaming bandwidth (e.g., 10+ Mbps) [23] and a low inter-
active latency (i.e., the delay between a user-input action
and when the game’s response to that action manifests at
the client) within ∼100 ms [54]. In practice, the former has
been largely fulfilled by the deployment of geo-distributed
cloud/edge servers [24]. Nevertheless, the latter, as a key met-
ric that directly determines the QoE of MCG, seems far from
satisfactory [3, 54]. MCG’s interactive latency has not been

∗ Co-primary authors. Zhenhua Li is the corresponding author.

well understood—it is more than network latency due to the
complexity of cloud-side processing and virtualization [72].

We conduct the first in-depth comparative measurement
study of MCG and CCG (cloud gaming for console games,
or console cloud gaming) on interactive latency character-
istics in practice. Our measurement is based on eight repre-
sentative cloud gaming platforms: GeForce Now [61], Boos-
teroid [20], JoyArk [41], CloudMoon [26], NetEase Cloud
Gaming [58], Tencent Pioneer [78], Tencent Start [79], and X-
MCG (anonymized due to their commercial concerns), regard-
ing both mobile and console games under diverse scenarios.
The study reveals important and surprising results:

• Our measured minimum interactive latency of MCG is as
high as 112 ms, 42% larger than that of CCG. This implies
that the processing logic of MCG should be more complex
than that of CCG and the interactive latency of today’s
MCG cannot meet the users’ requirements (<100 ms).

• The interactive latency has little to do with the user re-
quest workload but much to do with the game rendering
workload. Specifically, the interactive latency looks similar
during peak and non-peak hours (indicating sufficient scal-
ability), but surprisingly (up to 48%) higher for simple 2D
games than for complex 3D games (mostly relating to the
unbalanced resource allocation strategy of a platform).

• On average, network latency only accounts for 17% of the
interactive latency, indicating that network is not the key
bottleneck. In fact, a jitter (≤2 ms) in network latency often
has a “butterfly effect” on the interactive latency (≥10 ms).

The above drive us to go beyond RTT and understand the
interactive loop of MCG, including every step in the back-
and-forth MCG processing pipeline. However, the interactive
loop of commercial MCG platforms is rarely studied in depth
as it involves not only network links but also complex backend
processings in the cloud, which are typically invisible.

Analysis. To deeply understand the interactive loop of MCG,
we contacted developers of each platform. One platform X-
MCG (anonymized due to their commercial concerns) shared
their design and agreed to collaborate with us on improving in-
teractive latency. Its cloud side relies on a state-of-the-art An-
droid emulator Trinity [33] (optimized for high-performance
graphics rendering) and a widely-used streaming tool Sun-
shine [51]. Its client side is extended from Moonlight (the
client of Sunshine), supporting hardware-accelerated video
decoding and High Dynamic Range (HDR) streaming. We



Virtual 
DisplayVSync2

VSync3

VSync4

Client

Network

Cloud

Host OS

Emulator
Input 

Injection
Game Rendering

AndroidVSync1

User Inputs

Game Frames

Frame 
Decoding

Layer 
Composition

Display

Frame Encoding

Layer Composition
VSync5

Figure 1: The interactive loop of X-MCG.

take this unique opportunity to first expose to the public a
state-of-the-art MCG system’s interactive loop, and uncover
the root cause of the unsatisfactory interactive latency.

To precisely trace the data flow of a game frame in X-MCG,
we instrument relevant system services of Android, the GPU
module of Trinity, and core modules of Sunshine/Moonlight.
We find that the key bottleneck of the interactive latency is
the cloud-side graphics pipeline. More in depth, the major la-
tency of the cloud-side graphics pipeline does not lie in game
rendering (23%), but the Vertical Synchronization (VSync)
operations [2, 18, 53] (36%) in mobile OSes. As a synchro-
nization primitive, VSync synchronizes frame production and
consumption rates (e.g., the output frame rate of the GPU
and the refresh rate of the display) among different stages
in a graphics pipeline to avoid screen tearing [53] (i.e., a
visual artefact that occurs when a display device shows pixels
from multiple frames in a single screen draw). Given that
graphics pipelines of mobile systems are designed to han-
dle diverse workloads with power-constrained hardware and
fixed-refresh-rate display [18], VSync is built into the Android
graphics pipeline as a system-level always-on mechanism.

Given the multi-component and multi-stage nature of the
MCG graphics pipeline, severe performance penalty is in-
curred as each VSync event may cause an uncertain latency.
As shown in Figure 1, a game frame encounters as many as
five VSync events, creating up to 83 ms extra latency. Given
the periodicity of VSync events, even a slight network jitter
(e.g., 1 ms) can lead to a frame deadline miss, resulting in a
significant fluctuation (e.g., 13 ms) in interactive latency. Note
that the tight coupling of VSync with Android makes it not
limited to specific emulators or streaming tools, but affects
other representative MCG solutions (e.g., DroidCloud [47])
as well, incurring even higher (20%+) latencies (§6).

We argue that the VSync overhead in the MCG graphics
pipeline can be effectively optimized away with specialized
system design. Basically, current uses of VSync are built
for general-purpose mobile usage, where multiple apps and
system services may render simultaneously and thus require
sophisticated synchronizations to achieve smooth and correct
rendering. However, in MCG, the game app process monopo-
lizes the rendering pipeline, and thus game-irrelevant synchro-
nizations within the cloud (i.e., VSync2 and VSync3) could
be avoidable, given that layer composition and virtual display
only append system UIs (e.g., a status bar) to a game frame.

Client

Network

Cloud

Host OS

Emulator
Input 

Injection
Game

Rendering

AndroidVSync1
User Inputs

Game Frames

Frame 
Decoding

Layer 
Composition

VSync5

Display

Frame
Encoding

Submit

Capture

Game Frame 
Interceptor

Remote 
VSync

Coordinator

VSync4

…

Figure 2: The interactive loop of X-MCG using LoopTailor.

Essentially, only coordination with the client is a necessity,
leaving considerable space for optimization inside the cloud.

Optimization. We present LoopTailor, an end-to-end VSync
regulator to decouple game rendering from the lengthy cloud
pipeline (thus reducing four cloud VSync events to two), and
coordinate its pace directly with the client (VSync5). To do
so, LoopTailor carefully streamlines MCG’s interactive loop.
As shown in Figure 2, LoopTailor consists of two modules:
Game Frame Interceptor which extracts and reroutes game
frames to bypass unnecessary VSyncs (VSync2 and VSync3),
and Remote VSync Coordinator which coordinates ahead of
time the remaining VSyncs (VSync1, VSync4, and VSync5)
on both sides. LoopTailor’s approach is transparent to spe-
cific VSync implementations, making it a generic approach
requiring minimum modifications to the host/guest OS.

Nevertheless, realizing LoopTailor is challenging. First,
extracting game frames halfway from the pipeline can intro-
duce non-trivial guest-host frame copy overheads. Second,
VSync coordination between the cloud and the client requires
accurately predicting latencies of intervening stages, as a pre-
diction error may cause a frame deadline miss at the client.

For intercepting game frames, conventional approaches
like app-level render redirection [15,87] and framework-level
buffer hooking [83] induce substantial overheads of frame
copies in the virtual mobile graphics stack. Our solution in-
stead breaks the boundary of the guest system and the host
virtual GPU to efficiently identify render instructions issued
by the game and capture the game frames in place, thus min-
imizing frame copies between the CPU and the GPU. The
Interceptor then immediately forwards the game frames to the
encoder, so that VSync2 and VSync3 are bypassed.

For multi-stage latency prediction, we discover that the la-
tencies (incurred by game rendering, frame encoding, network
transmission, and frame decoding), despite heterogeneous and
fluctuating, can be forecast hierarchically with a low standard
deviation (<1.3 ms) based on their latent correlations. Thus,
we devise a Synergetic VSync Alignment approach which
proactively adjusts the execution time of rendering/encoding
operations across the cloud-side pipeline, so as to minimize
the client-side frame deadline miss rate (0.3%).

We implement LoopTailor atop X-MCG with 15K lines
of C/C++/Python code and evaluate its real-world perfor-
mance with 100 mobile devices. Our prototype is applicable
to both single- and multi-player mobile games. The results



demonstrate that LoopTailor can achieve desirable interactive
latencies of 82-96 ms (with X-MCG’s geo-distributed edge
servers), 34% lower than that of X-MCG’s original solution.
The average ratio of interactive latency fluctuation to network
jitter is greatly reduced from 11.52 to merely 1.23.

Contribution. We make the following contributions:

• We make a month-long measurement study on 8 represen-
tative cloud gaming platforms, revealing important results
on interactive latency and optimization opportunities.

• We conduct the first in-depth study of MCG’s interactive
loop. Our analysis identifies the VSync mechanism in the
cloud-side graphics pipeline of MCG as a key contributor
to the excessive interactive latency, which can be effectively
optimized with specialized design for MCG.

• We design and implement LoopTailor to streamline X-
MCG’s interactive loop, achieving sub-100 ms interactive
latency in real-world deployments. The code and data are
released at https://MCGlatency.github.io.

2 Measurement Study in the Wild
In this section, we introduce our methodology of measuring
the interactive latency of commercial cloud gaming platforms
(§2.1), and present multifold data analysis results (§2.2).

2.1 Measurement Methodology
Due to commercial interests and security concerns, almost
all the commercial cloud gaming platforms are closed-source
systems and provide very limited technical documentation to
the public. Therefore, we measure the interactive latency of a
platform from the outside in a record-and-recognize approach.

First, we use high-speed cameras to record videos of
user interactions with games with an ultra-high frame rate
of 2000 FPS (Frame Per Second) and Full-HD resolution
(1920×1080). We position 2 cameras in front of and at the
side of the device screen respectively, so that both user ac-
tions and visual game contents can be clearly observed. For
recorded videos, we examine each frame in a hybrid (manual
and algorithmic) approach to recognize the timestamp when
the user input action happens, as well as the timestamp when
the corresponding response of the action manifests.

In detail, we record specific interaction patterns for each
game (e.g., invoking game menus, changing views, and touch-
ing in-game buttons), which are performed with styluses in-
stead of fingers to ease detection. After recording, we leverage
conventional computer vision algorithms [43, 90, 92] to de-
tect and track objects in the frames. We first detect the stylus
and the screen from the side view of the device screen, and
then recognize the very frame (when the distance between
the stylus and the screen reaches the minimum) as the start
of an interaction. After that, we track the pattern-specific re-
sponse objects (e.g., button highlight) case-by-case in the
front view of the device screen to identify the end of an in-
teraction. Such an approach is common practice in existing

Table 1: Eight representative cloud gaming platforms studied
in this work, in alphabetical order by their names.

ID Platform Country Type

1 Boosteroid USA CCG
2 CloudMoon USA MCG
3 GeForce Now USA CCG
4 JoyArk USA MCG+CCG
5 NetEase Cloud Gaming China MCG+CCG
6 Tencent Pioneer China MCG
7 Tencent Start China CCG
8 X-MCG China MCG

work for collecting visual-related delays [31], and the ac-
curacy of the algorithms can reach 99+% according to our
random sampling-based manual checking. In this way, the
interactive latency can be deemed as the time interval be-
tween the two timestamps, with a negligible error of up to
two frames (∼1.0 ms) introduced by the camera.

Further, we are curious about the network impact on the
interactive latency since this is what common users are the
most concerned with. Once a user suffers from high inter-
active latency, s/he is most likely to complain about the net-
work latency. To address the concern, almost all the com-
mercial cloud gaming platforms have on-screen widgets pre-
senting the real-time network latency (via their client apps),
which greatly facilitates our recording the network latency.1

Since a low network bandwidth can also lead to high in-
teractive latency, we periodically record the downlink band-
width with the lightweight Android API NetworkStatsMan-
ager.querySummaryForDevice() in the meantime.

As listed in Table 1, we study 8 representative cloud gaming
platforms that are highly popular in either the USA or China,
using 100 mobile devices of 43 device models (1.8-3.3 GHz
CPU frequency, 4-16 GB memory, and Android 9-13) geo-
distributed in the corresponding countries (50 in 3 cities in
the USA and 50 in 3 cities in China). Among them, three are
CCG platforms, three are MCG platforms, and two support
both CCG and MCG. We include CCG in our measurements
to understand latency differences between MCG and CCG.

For each platform, we select its top-10 popular games to
measure the interactive latencies with different radio access
technologies (RATs): 5G (37%), 4G (29%), and WiFi (34%).
We set the streaming resolution and frame rate of each plat-
form to 1080P and 60 FPS respectively, which are the default
settings of most platforms. Also, we use the 100 mobile de-
vices to play games at different times (0:00, 3:00, ..., 21:00,
UTC+8) every day during a whole month (May. 2023), so
as to figure out the influence of user request workloads. The
duration of game playing each time is five minutes.

Ethical Claim. All the measurements and analyses through-
out this work are conducted with explicit permission of users
and no ethical concern is raised in this work.

1Some platforms may not be reporting accurate latency values, and dif-
ferent platforms may have different methodologies to calculate the latency.

https://MCGlatency.github.io


1C 2M 3C 4M 4C 5M 5C 6M 7C 8M
Platform ID

0

50

100

150

200

250

Av
g.

 In
te

ra
ct

iv
e 

La
te

nc
y 

(m
s)

Network Latency Non-Network Latency

Figure 3: Average interactive latency
of each platform. “M” and “C” denote
MCG and CCG respectively.

50 100 150 200 250 300 350 400 450
Interactive Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

Max = 403
Mean = 163
Median = 152
Min = 112

Max = 320
Mean = 119
Median = 109
Min = 79

MCG
CCG

Figure 4: Interactive latencies of our
studied MCG and CCG platforms.

50 100 150 200 250
Non-Network Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

Max = 222
Mean = 135
Median = 131
Min = 104

Max = 134
Mean = 92
Median = 87
Min = 71

MCG
CCG

Figure 5: Non-network latencies (i.e.,
interactive latency excluding network
latency) of MCG and CCG platforms.

MCG CCG
 

0

50

100

150

200

250

Av
g.

 In
te

ra
ct

iv
e 

La
te

nc
y 

(m
s)

WiFi 5G 4G

WiFi 5G 4G

Network Latency
Non-Network Latency

Figure 6: Average interactive latencies
of our studied MCG and CCG plat-
forms with different RATs.

1 5 10 15 20 25 30
Time (s)

0

50

100

150

200

250
In

te
ra

ct
iv

e 
La

te
nc

y 
(m

s)

Interactive Latency
Network Latency

0

20

40

60

80

N
et

w
or

k 
La

te
nc

y 
(m

s)

Figure 7: Interactive and network latencies
during a typical measurement on top of
Tecent Pioneer.

0 3 6 9 12 15 18 21 24
Hour of the Day

0

50

100

150

200

250

Av
g.

 In
te

ra
ct

iv
e 

La
te

nc
y 

(m
s)

Network Latency
Non-Network Latency

Figure 8: Average interactive latency
of Tencent Pioneer at different times of
a typical day (time zone: UTC+8).

2.2 Measurement Results
Among our records of individual measurements, a small por-
tion (6%) are undesirable because it is difficult for us to ana-
lyze their relevant interactive latencies. For example, when the
downlink bandwidth is insufficient, we can hardly quantify its
remarkable and highly fluctuating influence on the interactive
latency, thus making our analyses obscure. After ruling out
such cases, we obtain a total of 20,096 valid records, which
reveal quite a few surprising results with regard to interactive
latencies of today’s commercial MCG platforms.

General Statistics. All the studied MCG platforms suffer
from unsatisfactory interactive latencies ranging from 112 ms
to 403 ms—recall in §1 that smooth gaming experiences re-
quire a low interactive latency within 100 ms. In contrast,
in non-negligible (35%) cases interactive latencies of CCG
stay below 100 ms. Obviously shown in Figure 3 (in all the
bar charts throughout this paper, each error bar denotes the
standard deviation of the corresponding sub-bar), interactive
latencies of MCG are generally higher than those of CCG.

As shown in Figure 4, our measured minimum interactive
latency of MCG (112 ms) is 42% larger than that of CCG
(79 ms), and the average interactive latency of MCG (163 ms)
is 37% larger than that of CCG (119 ms). Regarding average
interactive latency, even the fastest MCG platform (8M: X-
MCG) is slower than the slowest CCG platform (4C: JoyArk).
We attribute the above to the more complex processing logic
of MCG compared with CCG, i.e., the mobile OS virtual-
ization specially required by MCG. In fact, CCG platforms

typically use hardware-assisted virtualization techniques (e.g.,
SR-IOV [62]) to share resources to VM instances, whose per-
formance is close to direct hardware access. But for MCG,
given the poor driver support of desktop GPUs in mobile
OSes, para-virtualized GPUs with additional virtualization
logic are usually required. Hence, there exists a gap in render-
ing performance between the CCG and MCG backends.

Network Impact. Contrary to most users’ common beliefs,
most of the excessive MCG latency is not attributed to the net-
work. With the network latency excluded (then the remaining
latency is referred to as the non-network latency), the mini-
mum non-network latency of MCG is still as high as 104 ms
(>100 ms), 46% larger than that of CCG (71 ms), as indicated
in Figure 5. This is because all our studied platforms have de-
ployed geo-distributed cloud and/or edge servers across either
the USA or China, making the network latency pretty low in
most cases. Concretely, in 81% of the valid records, the user
device lies in the same city as the cloud/edge server. More
in detail, no matter which RAT is used, the network latency
(averaging between 24 ms and 31 ms) only takes up a small
portion (averaging between 15% and 25%) of the interactive
latency, as indicated in Figure 6.

Common wisdom suggests a positive correlation between
interactive latency and network latency. Surprisingly, in a
non-trivial portion (13%) of our measurements the interactive
latency is negatively correlated with the network latency. To
visualize this, Figure 7 depicts results during a typical mea-
surement that includes such unexpected cases. Dots under



shadows denote cases of a negative correlation between in-
teractive latency and network latency. The reason behind the
above counter-intuitive phenomenon will be detailed in §3.3.
User Request Workload. Figure 8 presents average inter-
active latencies at different times of a typical day on Tencent
Pioneer, the most popular MCG platform in our measurement.
There is no significant difference between the interactive la-
tencies during peak hours (12:00 – 21:00) and non-peak hours
(00:00 – 12:00, 21:00 – 24:00). Further, we do not see notable
variation among the interactive latencies in different days of a
week, either. The above hold true for other MCG platforms as
well, revealing that today’s MCG platforms possess sufficient
scalability to serve a fluctuating user request workload.
Game Rendering Workload. Recall that for each platform,
we select its top-10 popular games to play and measure in-
teractive latencies, including simple 2D games, complex 3D
games, and so forth. Surprisingly, we note that on all MCG
platforms, simple 2D games with light rendering workloads
suffer from higher interactive latencies (10% on average) com-
pared with graphics-intensive 3D games. Given that official
documents of some MCG platforms mention that they selec-
tively schedule GPU resources for different game types [80],
we suspect that the surprising observation might be owing to
unbalanced resource allocation strategies, i.e., overly priori-
tizing the QoE of complex 3D games while ignoring require-
ments of lightweight 2D games. To validate the conjecture,
we consulted the customer service of each MCG platform,
and two of them acknowledge that simple 2D games are of-
tentimes subject to insufficient GPU resource allocations.

3 Diagnosing the Undesirable Interactive La-
tency of MCG

To further discover the root causes behind the above obser-
vations, we contacted the developers of the five commercial
MCG platforms. Eventually, the developers of X-MCG agreed
to share their design with us and collaborate with us to diag-
nose the undesirable interactive latency atop their platform.

In this section, we first introduce important background
knowledge regarding mobile graphics pipelines and VSync
(§3.1). Then, we dissect the end-to-end interactive loop of X-
MCG into 16 pipeline stages (§3.2). Afterwards, we measure
the latencies of key stages in the X-MCG pipeline to quanti-
tatively explain why the interactive latency is unsatisfactory
(§3.3). We will discuss system architectures of other MCG
solutions and the generalizability of our findings in §6.

3.1 Mobile Graphics Pipeline and VSync
The graphics pipelines of modern mobile OSes consist of
multiple stages due to the users’ diverse needs for graphics;
each stage performs its unique functionality. When a game
is played on an Android device, for instance, the game is
typically the beginning of the graphics pipeline. The game
performs graphics rendering by writing its contents into a
frame buffer (or frame for short) from a buffer queue termed

Surface [9]. At the same time, other system apps (e.g., sys-
tem UI) may render contents into their own Surfaces.

Various Surfaces are connected to a compositor called
SurfaceFlinger [10], whose job is to merge the contents of
individual Surface layers into one or more graphic frames
for display. In other words, after game frames are rendered,
SurfaceFlinger conducts Layer Composition [14] on the
frames. The composited result is then sent to a Hardware
Composer (HWcomposer) module [13], which submits the
contents to the actual display hardware.

It is worth noting that the stages usually work in their own
paces, which can cause frame access issues. For example,
while SurfaceFlinger regularly conducts Layer Compo-
sition at the refresh rate of the display, the pace of game
rendering can be rather uncertain. When the game delivers
a new frame to SurfaceFlinger while it is compositing,
the composited result may contain portions of multiple game
frames, leading to the screen tearing [53] problem.

To address screen tearing, modern mobile OSes typically
adopt the VSync mechanism; other mechanisms (e.g., Triple
Buffering [34]) have also been proposed, but each of them
alone is generally unsuited to power-restrained mobile sys-
tems without the help of VSync [2]. As mentioned before,
VSync is a classic access control mechanism (or synchro-
nization primitive) for the graphics pipeline, which controls
the frame intervals of two adjacent stages to make the frame
access exclusive. It works in an event-driven manner: frame
consumption is triggered periodically by VSync events at a
pace specified by the consumer (e.g., when the display with a
refresh rate of 60 FPS is the consumer, the period is 1/60 s).
Note that the frequency and period of VSync events are de-
termined by the frame rate of the consumer in a graphics
pipeline, and thus cannot be adjusted freely.

In each period, when the producer finishes frame produc-
tion, it waits for the vertical blanking interval [44] (i.e., the
time interval between the end of a production and the next
VSync event of the consumer). Then, it delivers the frame to
the consumer only when no consumption (e.g., frame draw-
ing) is in progress, so as to avoid screen tearing while saving
its power (i.e., preventing the producer from generating too
many frames that cannot be processed by the consumer). In
other words, when the processing of one frame is finished, the
graphics pipeline will not process a new frame immediately;
instead, the processing of a new frame will be delayed till the
signaling of the next VSync event, thus creating an uncertain
latency. Worse still, the latencies can accumulate in a lengthy
graphics pipeline, leading to unsatisfactory user experiences.

3.2 The Interactive Loop of X-MCG
X-MCG is developed and commercialized through the combi-
natory use of Trinity and Sunshine on the cloud side, as well
as extending Moonlight (the client of Sunshine) as the client
app. The developers of X-MCG carefully make the choice
by conducting benchmarks on various existing MCG solu-



tions, which will be elaborated in §6. Further, they customize
the AOSP (Android Open Source Project) [11] system that
runs within the cloud servers by pruning unnecessary system
services like BatteryService [76].

The high-level interactive loop of X-MCG is presented
in Figure 1. It comprises as many as 16 stages as shown in
Figure 9, which will be detailed below. The pipeline starts
from the user interaction with the client display hardware,
and the client app captures user inputs (Stage 1: User Input
Capture). Inputs are then sent to the cloud-side streaming
component Sunshine (Stage 2: User Input Transmission).
Upon receiving inputs, Sunshine injects them into the mobile
game application that runs on the guest OS (Stage 3: Input
Injection). As mentioned before, the guest OS is a customized
AOSP system that runs within the Trinity emulator.

Afterwards, the game prepares to process the inputs and
render the game graphics. To avoid screen tearing and con-
serve power, mobile games synchronize the game’s frame rate
to a portion of the display refresh rate of the device [28, 81].
As explained in §3.1, they use VSync events to control how
quickly game frames should be produced, which is usually
specified by the developer/user via an in-game option. Con-
sequently, user inputs need to wait for a VSync event before
it gets processed and the game rendering starts (Stage 4:
VSync1), and VSync1 cannot be disabled as it is built deep
into the game rendering logic for supporting fixed-refresh-rate
mobile display.

With regard to game rendering, modern mobile games usu-
ally use rendering APIs like OpenGL ES [16] to render into
their Surfaces (Stage 5: Game Rendering). In order to
achieve GPU-accelerated rendering in AOSP, typical solutions
(e.g., Google Android Emulator [8] and DroidCloud [47]) for-
ward render instructions from the GPU driver in AOSP to the
host-side virtual GPU device using remote procedure calls
(RPCs), which turns out to be slow and expensive. In contrast,
through the novel graphics projection mechanism [33], the
Trinity emulator directly resolves the vast majority (>99%) of
rendering API calls within the guest GPU driver, significantly
reducing RPC calls and improving the rendering performance.

When game rendering finishes, the results are submitted
to SurfaceFlinger. SurfaceFlinger has to work in the
same pace with the display hardware, and therefore needs
to wait for VSync (Stage 6: VSync2) before compositing
the output of the game app including system UIs (Stage 7:
Layer Composition I). Subsequently, the composited frame
is sent to HWcomposer, which waits until the display hard-
ware has finished the scan-out [32] of the previous frame
(Stage 8: VSync3). Then, HWcomposer presents the frame to
the virtual offscreen display device provided by the Trinity
emulator (Stage 9: Virtual Display). VSync2 and VSync3
can introduce fluctuating delays due to highly variable game
rendering workloads as well as possible resource contention
in commercial MCG platforms, given that hardware resources
are typically shared to a large number of virtualized instances

Client Cloud

1

2

3

4 6

8

5

7

9

10

11

12

13

14

15

16

Client App:

Client OS:

Game App:1 13

15

3 410 11 5

6 7 8 914 16

Emulator:

Guest OS:

Figure 9: The 16 stages in the interactive loop of X-MCG.

with diverse game workloads.
Afterwards, Virtual Display forwards the frame to the Sun-

shine encoder. The encoder performs frame encoding accord-
ing to the video frame rate set by the user, so a separate VSync
is used (Stage 10: VSync4). VSync4 exists because the client-
side video frame rate may be different from the cloud-side
game frame rate, and simple strategies like delivering frames
immediately cannot satisfy the frame rate requirement of the
client. The encoder and the Virtual Display are coordinated in
the host virtual GPU, so that frame forwarding and encoding
take place in the GPU with minimal frame copies between
GPU and CPU (Stage 11: Frame Encoding).

Over the network, the encoded game frame is transmitted
to the client (Stage 12: Game Frame Transmission), which
collects and decodes the frame (Stage 13: Frame Decoding).
Then, similar to VSync2, the decoded frame waits for another
VSync event triggered by the client SurfaceFlinger (Stage
14: VSync5) before conducting Layer Composition (Stage 15:
Layer Composition II). Note that VSync5, as a client-side
VSync, can be disabled, but only with developer/root privi-
leges. Furthermore, once it is disabled, the effect is global and
other apps will also suffer from side-effects like screen tearing
and increased power consumption, which is thus unacceptable
to normal users. Finally, the composited frame is scanned out
by the display hardware (Stage 16: Display)2.

3.3 Root Cause Analysis
Among the 16 stages, we want to uncover which ones con-
tribute the most to the interactive latency. To this end, we
conduct an in-depth measurement on the end-to-end loop
of X-MCG using 10 phones (with different device models)
whose OSes are tailored for detailed latency recording. Given
that delays of Stage 1 and Stage 16 are mostly induced by
the display hardware and thus can hardly be measured by
software means, we focus on measuring delays of Stages 2-15
(so that we can infer the sum delay of Stage 1 and Stage 16).

To precisely trace the data flow of a specific game frame
in a lightweight manner, we measure passively by instru-

2Similar to VSync3, the composited frame needs to wait for another
VSync event before the display scan-out, but as this VSync lies deep inside
the client system and is invisible to user apps, we merge it to Stage 16.



Table 2: Latency breakdown of X-MCG (in unit of ms).

Category Mean Median Min Max

Network 15.7 16.4 7.9 24.1
VSync 43.9 44.0 4.5 82.9

Game Rendering 27.9 28.2 25.7 33.2
Video Processing 27.2 28.9 18.1 46.7

Layer Composition 5.4 5.1 3.0 6.6
Others 2.6 2.3 1.6 3.9

menting relevant system (Android, AOSP, Trinity and Sun-
shine/Moonlight) modules and recording the timestamps of
relevant network packets. Specifically, we measure the net-
work latency (Stage 2 and Stage 12) by piggybacking times-
tamps with network packets between Sunshine and Moonlight.
In the cloud-side AOSP system, we instrument system ser-
vices including InputDispatcher, SurfaceFlinger, and
HWComposer in the framework layer, as well as the OpenGL
ES library in the Hardware Abstraction Layer (HAL). In this
way, delays of Stages 3-8 can be accurately recorded. In Trin-
ity, we instrument the virtual display module to obtain the
delay of Stage 9. Further, through tracking the encoding pro-
cess of Sunshine, delays of Stage 10 and Stage 11 can be
clearly observed. Finally, we instrument Sunshine and the
client Android system to measure the delays of Stages 13-15.

Based on the above fine-grained instrumentation through-
out the pipeline, we collected data at various times of each
day during a week, and obtained the latency traces for a total
of 35 hours of game playing. The measurement overhead is
confined to a negligible level: the average CPU utilization is
1%, and the average memory consumption is 703 KB. We
classify the delays of the measurable stages (Stages 2-15)
in the loop into six categories, including Network (Stage 2
and 12), VSync (Stages 4, 6, 8, 10, and 14), Game Render-
ing (Stage 5), Layer Composition (Stages 7 and 15), Video
Processing (Stages 11 and 13), and Others (Stages 3 and 9).

As listed in Table 2, in terms of mean latency, the VSync
mechanism (5 VSync events) contributes the most (35.7%)
to the non-network latency, even more than Game Rendering
(22.7%) and Video Processing (22.1%). Moreover, delays in-
curred by VSync events are highly fluctuating between 4.5 ms
and 82.9 ms (even more fluctuating than the network latency
in our measurements), causing the interactive latency to vary
significantly even when the network latency is stable. The
above findings explain the counter-intuitive phenomenon we
observe in §2.2—a lower network latency does not necessar-
ily translate to a better interactive latency, since network is
usually not the deciding factor. As for the “butterfly effect”
mentioned in §1, it happens mostly when network jitters cause
subsequent pipeline stages to miss VSync events according
to our observation.

As shown in Table 3, each VSync event is required by an in-
dividual stage. Delving deeper into the loop, we discover that
5 VSync events are tightly coupled with other stages. VSync1
has been built into modern game engines like Unity [82] and

Table 3: Specific roles of the five VSync events and the aver-
age latency incurred by each VSync event.

Stage Caused By Location Latency

4 Game Rendering Game 8.5 ms
6 Layer Composition I Guest Android 9.0 ms
8 Virtual Display Guest Android 9.5 ms

10 Frame Encoding Encoder 9.1 ms
14 Layer Composition II Client Android 7.9 ms

Unreal [29] (Stage 5). VSync2, VSync3, and VSync5 are
required by core graphics modules of both cloud-side and
client-side Android systems, (namely SurfaceFlinger and
HWComposer) (Stages 7, 9, 15). VSync4 is necessitated by the
video encoder to encode videos at user-defined frame rates
(Stage 11). Unfortunately, a lack of coordination between the
VSync events causes an uncertain delay for each game frame
with respect to each event. According to our measurements,
the latencies of 5 VSync events all exhibit a nearly uniform
distribution between 0 and 16.7 ms.

Fortunately, while all the VSync events are structurally
required and are hard to disable from the perspective of an
MCG platform, not every VSync event is functionally useful.
In the context of MCG, games are usually the only foreground
apps besides system UIs (e.g., Android task bar), so Layer
Composition and Virtual Display (Stage 7 and Stage 9) in the
guest Android system (AOSP) only append game-irrelevant
system UIs to a frame in almost all cases. Thus, these stages
(along with their VSync events) are functionally unnecessary
for MCG, as the game frames are ready to be displayed on
the client after Game Rendering (Stage 5). This motivates
our attempt to bypass some VSync events and decouple game
rendering from the lengthy graphics pipeline, hoping to avoid
or reduce their impact on the interactive latency.

4 System Design
Since the VSync mechanism is the biggest contributor to
the interactive latency of X-MCG, we wish to minimize its
negative impact. Guided by our diagnosis insights in §3.3,
we design LoopTailor, an adaptive whole-loop regulator of
VSync events for lowering the interactive latency of X-MCG
to a desirable level (<100 ms). In this section, we first present
a brief overview of LoopTailor along with the design goals
(§4.1). Then, we detail its two key components: Game Frame
Interceptor (§4.2) and Remote VSync Coordinator (§4.3).

4.1 LoopTailor Overview
LoopTailor sets out to meet the following design goals:
• Bypassing VSync events that are functionally unnecessary

without disrupting the frame access control of the graphics
pipeline (i.e., without harming the game’s visual display);

• Accurately predicting and aligning the remaining VSync
events to minimize their incurred latency;

• Introducing very little computational overhead and negligi-
ble impact on the smoothness of game graphics.



Figure 2 shows the architectural overview of LoopTailor,
which streamlines the interactive loop of X-MCG by crop-
ping the cloud-side graphics pipeline and stitching it to the
client-side pipeline in a fine-grained manner. At the heart of
LoopTailor are two key components: 1) Game Frame Inter-
ceptor (GFI, §4.2) that efficiently captures the game frames
ahead of schedule to bypass 2 (out of 5) VSync events; and 2)
Remote VSync Coordinator (RVC, §4.3) that forecasts and
synchronizes the remaining 3 VSync events by carefully co-
ordinating the cloud and the client. Note that the five VSync
events are necessitated by the Android system design and
the nature of constant-frame-rate video codec; apart from our
emulator-based solution, the high-level design of LoopTailor
is applicable to other (potential) solutions like container-based
or function-based serverless gaming as well.

4.2 Game Frame Interceptor (GFI)

GFI aims to capture raw frames from game rendering ahead of
time, before any form of layer composition. In Android, the de-
sired interception should take place between the game app and
SurfaceFlinger (before Stage 6 in §3.2), and there exist
multiple intuitive methods. App-level render redirection [17],
for instance, redirects the app rendering Surface to a vir-
tual display with hooking libraries such as XPosed [87], and
uses the MediaProjection API [15] to directly record ren-
dered contents. Framework-level buffer hooking [83] adds a
hook inside Surface, and performs interceptions whenever a
game-owned Surface delivers a frame to SurfaceFlinger.

Nevertheless, for MCG where captured frames need to be
subsequently encoded and sent to the client device, such in-
tuitive approaches incur considerable frame copy overheads
(note that frame encoding in the original X-MCG pipeline is
in-place, c.f., Stage 11 in §3.2). In essence, both approaches
capture frames solely from inside the guest, but ultimately
send the frames using the network provided by the host. There-
fore, data copies between the guest and host are unavoidable.

To realize low-overhead frame interception, our solution
breaks the virtualization boundary and captures game frames
in place. Figure 10 plots the workflow of GFI. The high-
level idea is to leverage cross-layer information from both
the guest system and the host-side virtual GPU to intercept
and forward handles (as opposed to the actual frame content),
so as to minimize data copies. In detail, we customize the
gralloc graphics allocator [12], the guest GPU driver, along
with the virtual GPU device in Trinity. Gralloc provides
crucial information regarding frame correlations across the
virtualization boundary, so that we can identify the actual
host-side GPU resources using the guest-side frame identifier.
Meanwhile, in order to separate render instructions of the
target game from other apps like Android system UI, we
modify the guest GPU driver, adding Android framework-
level Surface information into GPU render contexts.

Based on the above cross-layer information, we monitor

Game

System UI

Guest GPU Driver SurfaceFlinger

Encoder

Host Virtual GPU

…

Gralloc …

Figure 10: The workflow of GFI.

frame swap events (eglSwapbuffers) in the GPU driver,
so that when a game-owned Surface delivers a frame to
SurfaceFlinger, we can extract the actual resource han-
dle(s) referring to the game frame in the host-side virtual GPU
device. Afterwards, the intercepted resource handle(s) are im-
mediately forwarded to the video encoder module, which
utilizes the interop libraries provided by the GPU vendor
(e.g., nvenc [60] for NVIDIA GPUs) to achieve in-place col-
orspace conversion and video encoding. In this way, data
exchange between the CPU and the GPU, as well as between
the guest and the host, is kept minimal.

With the game frames intercepted, Stages 6-9 (c.f. §3.2)
in the original graphics pipeline can be bypassed, including
two VSync events, Layer Composition I, and Virtual Display.
Additionally, for SurfaceFlinger and the virtual display
device in Trinity, we disable their rendering logic to reduce
the GPU load, since the composited frames are no longer
needed (frame swapping is preserved to not disrupt the data
flow). Moreover, to support a minority of games that use mul-
tiple Surfaces for video playback or UI overlay, we add a
trimmed-down compositor in the encoder to replace the origi-
nal Android compositor in the VM, since the original Android
compositor introduces considerable overheads (e.g., comput-
ing visible regions, matching display devices, and drawing
layers). Specifically, we customize the Android compositor
by 1) discarding game-irrelevant layers, 2) removing unnec-
essary post-processing (e.g., submitting frames to display),
and 3) synchronizing the composition pace with the encoder
to minimize latency overheads. Instead of relying on a stan-
dalone VSync (which defeats our original purpose of bypass-
ing VSync events), frames are cached and composited right
before encoding, so the delay caused by frame composition
in these corner cases can be essentially reduced.

4.3 Remote VSync Coordinator (RVC)
Design Overview. With the informative help of GFI (Game
Frame Interceptor), RVC aims to align the remaining three
VSync events (VSync1, VSync4, and VSync5). As VSync5 is
controlled by the client OS and cannot be changed by a user



app, RVC proactively synchronizes the timing of the cloud-
side VSync1 and VSync4 with the client-side VSync5. To this
end, RVC first obtains the timing information of VSync5 from
the Android frame pacing library [6] in the client3, and then
predicts the delay of each intervening stage between VSync1
and VSync5 based on hierarchical time series forecasting [85]
(Hierarchical Latency Prediction).

Afterwards, RVC performs Synergetic VSync Alignment
which exploits the latency forecasts to adaptively postpone
VSync1 (Synergetic VSync Alignment for VSync1) and
strategically perform reactive frame encoding by decoupling
VSync4 (Synergetic VSync Alignment for VSync4). Hence,
a game frame (whose rendering and encoding are driven by
VSync1 and VSync4 respectively) can arrive at the client
(more specifically, arrive at VSync5) just in time, without
waiting for the signaling of VSync4 and VSync5.

Hierarchical Latency Prediction. There are four stages
happening between VSync1 and VSync5: game rendering,
frame encoding, network transmission, and frame decoding.
Although the latency of each stage can be independently fore-
cast as a time series and summed directly to get the overall
latency, the prediction result is oftentimes highly biased due
to error propagation [39].

To minimize the prediction error, our key insight is that the
stages have latent correlations within the end-to-end graphics
pipeline. For example, if the game player suddenly enters a
complex scene, game rendering will take longer time, the en-
coder will need more time to encode the frame as a standalone
key frame (i.e., I frame) [74], and the encoded frame will be
larger in size, leading to longer network transmission time
and longer client-side frame decoding time. Also, we note
that the involved latencies can be hierarchically organized as
shown in Figure 11. Therefore, we adopt hierarchical time
series forecasting [85] based on the MinT approach [85].

First, we adopt regression trees [52] to independently fore-
cast the time series at all levels of the hierarchy (termed base
forecasts). We resort to the regression tree algorithm as op-
posed to other algorithms because it is effective for both series
with seasonal features [67] and fluctuating series like network
latencies [89]. Moreover, it incurs low computation (<0.5 ms)
and memory (<1 MB) overhead. Efficiency is of particular
significance in our case, since the predictions need to be done
at intervals of a few seconds.

Regarding the inputs of the regression trees, we follow
common practice [67, 89] and feed them with the most recent
latency data, as well as relevant data including the size of
the encoded frame, network loss rate, and network bandwidth
passively estimated from the media stream [89]. Since we
need to make predictions at the frame-level granularity, the

3The timings of client-side stages (e.g., packet receiving, decoding, and
VSync5) are synchronized with the cloud server’s clock, leveraging a widely-
used clock offset estimation approach [22] and a classic skew compensation
algorithm [56]. The historical latency series (including the one-way network
latency) are measured according to the calibrated timestamps.

Latency Between 
VSync1 and VSync5

Graphics-related
Latency

Network
Latency

Rendering
Latency

Encoding
Latency

Decoding
Latency

Network
Latency

𝑆 =

1 1
1 1
0 0

1 1
1 0
0 1

1 0
0 1
0
0

0
0

0 0
0 0
1
0

0
1

Figure 11: The tree and the matrix representation of the hier-
archical latency series.

time window (i.e., the time unit in the forecast) is set as the
smallest VSync interval among VSync1, VSync4 and VSync5
(typically 1/60 s). Accordingly, the information window size
(i.e., the number of history time windows) and the forecast
horizon (i.e., the number of future time windows) are typically
set as 240 (=60×4) and 60, respectively. More details about
the setting of hyperparameters will be provided later in §5.4.

Given the base forecasts, we aim at minimizing the forecast
errors by strategically reconciling the forecasts across the lev-
els of the latency hierarchy. Let Dt = {y1,y2, ...,yt} denote
the history data observed up to time t, where yi (i = 1,2, ..., t)
is a vector containing all latencies in all levels of the hierar-
chy at time i. Let ŷt(k) (k = 1,2, ...,K) denote forecasts of
k future time windows based on Dt , where k is the forecast
horizon. Then, the optimal forecasts of k future time windows
minimizing the conditional expectation

E[∥ yt+k − ŷt(k) ∥
2
2|Dt ], (1)

where ∥ · ∥p is an Lp norm [30], is derived from

µt(k) = E[yt+k|Dt ]. (2)

More details on optimal hierarchical forecasts are in [39].
If the conditional expectation (1) has errors, we wish to

provide the best estimate of µt(k). Specifically, from the base
forecasts ŷt(k), we compute the revised forecasts as

ỹt(k) = SPŷt(k) (3)

with a weight matrix P ∈ P ⊆ R4×7, where P is the domain
of P and S is a “summing” matrix of order 7×4 used to ag-
gregate the lowest-level latency series, as shown in Figure 11.
In detail, we compute the weight matrix P by solving the
following optimization problem:

min
P∈P

Tr(Var[yt+k − ỹt(k)|Dt ]) subject to SPS = S; (4)

Tr(·) is the trace of a matrix, based on MinT estimator [85].
To conclude, we realize combination forecasts for all levels

of the latency series hierarchy through an optimal weight
matrix P. In this way, we minimize the standard error of the
coherent forecasts across the entire hierarchy.
Synergetic VSync Alignment for VSync1. With the pre-
dicted latencies in hand, the paces of VSync events can be
adjusted in a synergetic fashion. In practice, we adjust the tim-
ing of VSync1 by blocking game rendering in the virtual GPU.
As demonstrated in Figure 12, properly adjusting VSync1 can



reduce the interactive latency, by making the rendered frames
reflect more recent user inputs (e.g., the first three arrows
in Input Series 2). Specifically, once alignment occurs, user
inputs that happen in the interval highlighted by the red box
(i.e., the first 3 inputs in Input Series 2) will be processed by
“Rendering1” instead of by the original “Rendering2”. Con-
sequently, the response of these user inputs can be displayed
earlier, leading to a lower interactive latency.

We use Monte Carlo sampling [71] to minimize the de-
lay expectation of n future frames in the pipeline, where n
equals the forecast horizon. Specifically, we let Vc denote
the timestamp of the most recent VSync5 event in the client,
and let x = {x1,x2, ...,xn} denote predicted timestamps when
the client finishes frame decoding, where xi is the times-
tamp of the i-th future frame from now on. Then, we de-
note the timestamps of subsequent relevant VSync5 events as
V = {V1,V2, ...,Vn}, where Vi is computed as

Vi =Vc +

(
1+

⌊
xi −Vc

Ic

⌋)
· Ic, i = 1,2, ...,n. (5)

Here Ic is the time interval of VSync5. Given x and V , the
problem is to obtain the minimum positive value of o (de-
noting the offset of the current blocking adjustment) that
minimizes E(x,V ,o), which is the latency expectation of the
subsequent n frame processings. It is computed as

E(x,V ,o) =
n

∑
i=1

f (xi,Vi,o). (6)

Here f (xi,Vi,o) is the expected delay induced by the VSync5
event on Vi, which is computed as

f (xi,Vi,o) = (Ic − (Vi − xi −o)) mod Ic. (7)

Given that the latency expectation (6) is a discontinuous
function, we approximate the optimal value of o based on
Monte Carlo sampling. Finally, the VSync1 events are post-
poned with an offset of o, completing the alignment. In reality,
we perform the alignment for VSync1 periodically every n
frames, where n is the forecast horizon.
Synergetic VSync Alignment for VSync4. Given that the
cloud-side game frame rate and the client-side video frame
rate might be different, frame encoding is normally driven by
VSync4, whose interval matches the video frame rate. How-
ever, with the help of GFI, game frames can be encoded in a
reactive manner without waiting for VSync4, while maintain-
ing client-side frame rate stability based on the forecasts.

RVC decouples frame encoding from VSync4 events to
reactively encode ready-to-consume frames in time. When the
cloud-side game frame rate is lower than or equal to the client-
side video frame rate, all produced game frames need to be
encoded for streaming to satisfy the client-side requirement
as much as possible. Otherwise, the forecasts are used to
determine whether the encoder should encode or drop a game
frame, to match the video frame rate requested by the user.

The encoder memorizes the timeline of the original VSync4
events, as well as the timestamp of the last encoded frame.

Input Series 1

Rendering1 Rendering2

Input Series 3

Rendering3

Rendering1 Rendering2 Rendering3

Input Series 2

…

…

…

…

User Input

VSync1 Unaligned

VSync1 Aligned

VSync5 Display1 Display2

Figure 12: An example of Synergetic VSync Alignment. Af-
ter the alignment, the first three inputs in Input Series 2 are
processed ahead of schedule.

When a new game frame Fi arrives at Ti, it is encoded if the
age of the last encoded frame exceeds one VSync interval,
or if the predicted arrival time Ti+1 of the next frame Fi+1
satisfies |Ti+1 −Tv| ≥ |Ti −Tv| (Tv is when the next VSync4
event occurs). If neither condition holds, Fi will be dropped
since Fi+1 better fits the client-side video pace. In this way,
we can avoid delays incurred by VSync4 while adaptively
maintaining the frame rate stability of the video.

5 Evaluation
We first describe our evaluation setup in §5.1, followed by
evaluating the overall performance of LoopTailor in §5.2 and
assessing the contributions of individual modules in §5.3.
In §5.4, we present several micro-benchmarks to quantify the
impact of key parameters and network dynamics.

5.1 Experimental Setup
Collaborating with X-MCG, we deploy LoopTailor on their
cloud infrastructure. This facilitates fair comparisons between
the original X-MCG and X-MCG enhanced with LoopTailor,
which we refer to as LoopTailor for brevity. We also compare
LoopTailor with other representative MCG platforms studied
in §2.1: Tencent Pioneer, NetEase Cloud Gaming, JoyArk,
and CloudMoon. Regarding client devices, we leverage the
100 mobile devices used in our measurement study (§2.1).
Other settings (including camera settings, game types, game
play duration, RAT, streaming resolution / frame rate, etc.)
are the same as those in §2.1. We use the 100 mobile devices
to collect evaluation data during a whole month (Nov. 2023),
and collected a total of 21,743 valid records.

We also implement two intuitive baseline solutions based
on the X-MCG architecture to evaluate the performance of
LoopTailor in more depth. (1) Disable VSync: Since the client-
side VSync5 and the in-game VSync1 cannot be controlled
by an MCG platform, we disable VSync2/3/4 in the cloud.
(2) In-VM Streaming: With the help of virtualized codec and
NIC devices, videos are streamed in the guest OS (though the
host NIC should still be used).

5.2 Overall Performance
Figure 13 plots the average interactive latency for X-MCG,
LoopTailor, and four other MCG platforms (refer to Table 1
for their name-ID mappings), with a breakdown between



LT X-MCG 2 4 5 6
Platform ID

0

50

100

150

200

250

Av
g.

 In
te

ra
ct

iv
e 

La
te

nc
y 

(m
s)

Network Latency Non-Network Latency

Figure 13: Average interactive latency.
LT denotes LoopTailor.

50 100 150 200
Non-Network Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

Max = 144
Mean = 121
Median = 120
Min = 104

Max = 113
Mean = 94
Median = 94
Min = 79

Max = 82
Mean = 76
Median = 77
Min = 64

X-MCG
GFI
GFI+RVC

Figure 14: Performance breakdown with
regard to non-network latency.

0 50 100
VSync-Induced Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

Max = 76
Mean = 44
Median = 44
Min = 10

Max = 49
Mean = 27
Median = 27
Min = 4

Max = 25
Mean = 10
Median = 9
Min = 3

X-MCG
GFI
GFI+RVC

Figure 15: Performance breakdown re-
garding VSync-induced latency.

Table 4: Latency comparison (in milliseconds) between Loop-
Tailor and baseline solutions. “Tail” refers to 99% percentile.

Interactive Latency Non-Network Latency

Solutions Avg. Med. Tail Avg. Med. Tail

LoopTailor 91 91 95 76 77 82
Disable VSync 106 105 121 90 90 104

In-VM Streaming 141 139 162 125 124 146

the network vs. non-network latency. As shown, LoopTai-
lor yields the lowest average interactive latency of 82-96 ms
(91 ms on average, 95 ms in 99% percentile), 35% lower than
the original X-MCG (139 ms on average, 158 ms in 99% per-
centile). Recall that a smooth gaming experience requires a
sub-100 ms interactive latency, which is achieved by LoopTai-
lor. Note that the desirable interactive latency of LoopTailor
is also ascribed to X-MCG’s wide deployment of edge servers
in the latter half of 2023. The non-network latency of Loop-
Tailor is only 64-82 ms (76 ms on average, 82 ms in 99%
percentile), 37% lower than the original X-MCG (121 ms on
average, 141 ms in 99% percentile) and 40% lower than the
best of the other four MCG platforms (127 ms on average,
150 ms in 99% percentile).

As shown in Table 4, LoopTailor outperforms the baseline
solutions in terms of interactive latency and non-network
latency. Although it appears that LoopTailor has no significant
latency advantage over Disable VSync, the latter introduces
severe side effects including unstable frame rate and screen
tearing [42]. As for In-VM Streaming, it performs the worst
due to the additional overheads of virtualized codec and NIC
devices for multiplexing hardware resources.

Regarding other QoE metrics for cloud gaming, we observe
that the average client-side video frame rate stays high at
an average of 59.8 FPS, with a small standard deviation of
0.6. This indicates that LoopTailor is capable of delivering
a smooth game streaming experience. Regarding the image
quality of LoopTailor, we do not observe jittery frames or
degradation of image quality compared to original X-MCG.

5.3 Contributions of Individual Modules
We evaluate the performance gain brought by each module of
LoopTailor: GFI (Game Frame Interceptor) and RVC (Remote

VSync Coordinator), by enabling them incrementally. We
exclude the network latency when reporting the results.

We begin with only enabling GFI. Recall that GFI elimi-
nates VSync2 and VSync3. As shown in Figure 14, this results
in an average non-network latency of 94 ms, a 22% reduction
compared to X-MCG. The maximum non-network latency
of GFI-only LoopTailor is even 7% lower than the average
non-network latency of X-MCG. To delve deeper into benefits
of GFI, we measure the latency reduction of different stages.
First, we consider the latency incurred by only VSync events
(termed VSync-induced latency) and plot its distributions in
Figure 15. As shown, GFI reduces the VSync-induced latency
by 38% on average. Second, GFI helps cut the layer com-
position latency by 52% since several unnecessary pipeline
stages are bypassed. Third, GFI further helps accelerate game
rendering by 6% because with a few pipeline stages bypassed,
more resources can be allocated for rendering.

Next, we enable RVC to make a full-fledged LoopTailor
system. As in Figure 14, RVC further reduces the average non-
network latency by 19%, compared to using GFI alone. This
translates to a 37% reduction in the total non-network latency
compared to X-MCG. Through Synergetic VSync Alignment,
RVC greatly reduces the average VSync-induced latency by
57% (73%) compared to using GFI alone (X-MCG). Unlike
GFI which only optimizes the cloud side, RVC tackles both
the cloud and the client side. It reduces the average latency
incurred by VSync5 on the client side from 8 ms to 3 ms.

The above results demonstrate both GFI and RVC are es-
sential for LoopTailor. Their synergy allows LoopTailor to
reach a consistently low non-network latency of 64-82 ms.

5.4 Micro-benchmarks
Impact of the Information Window Size. Recall from §4.3
that the information window size (IWS) determines the num-
ber of time windows used in latency prediction. Figure 16
shows the relationship between the IWS and the standard
error of latency prediction (the forecast horizon is set to 1 in
this experiment). As shown, the standard error first decreases
and then increases. The decrease is because larger informa-
tion windows usually provide more sufficient obervations on
history data, whereas the increase is explained by too many
outdated history data within the window.



60 120 180 240 300 360
Information Window Size

0.0

0.5

1.0

1.5

St
an

da
rd

 E
rro

r (
m

s)

All Latencies
Network Latency

Figure 16: Avg. std error of RVC with
different information windows.

10 15 30 60 120
Forecast Horizon

58.0

58.5

59.0

59.5

60.0

Fr
am

e 
R

at
e 

(F
PS

) FPS
Standard Error

0.0

0.5

1.0

1.5

2.0

St
an

da
rd

 E
rro

r (
m

s)

Figure 17: Avg. video frame rate & std error
with different forecast horizons.

<1 1~5 5~10 >10
Network Jitter (ms)

0

20

40

60

80

100

Av
g.

 N
on

-N
et

w
or

k 
La

te
nc

y 
(m

s) VSync4/5-Induced Latency Other Latency

Figure 18: Avg. non-network latency
with different network jitters.

Given the existence of key frames in game rendering, it
is preferable to set the IWS to be larger than the intervals
between each pair of key frames (usually about 10 to 20
VSync intervals based on our measurements). Meanwhile,
IWS should not be too large considering both the forecasting
errors and computation overheads. Figure 16 shows that RVC
achieves the lowest standard error when IWS is around 240,
which reaches the minimum standard error (0.6 ms) with a low
computation overhead (<0.5 ms). Regarding the prediction of
network latency, RVC achieves an average standard error of
<1 ms (0.69-0.84 ms as shown in Figure 16) under different
IWS settings. The standard errors exhibit tiny fluctuations
given that the network condition in our evaluation is stable
with only ∼2 ms jitters. The performance of LoopTailor under
diverse network conditions is discussed later in this section.

Impact of the forecast horizon. The forecast horizon de-
termines the number of future time windows produced by a
prediction in RVC. On one hand, a smaller forecast horizon
leads to a higher frequency of VSync1 adjustments, as illus-
trated in §4.3; adjusting VSync1 too frequently may result in
a slight client-side video frame rate drop, because an incor-
rect forecast may cause a frame deadline miss at the client.
On the other hand, a large forecast horizon may increase the
forecasting error. We experimentally quantify this tradeoff in
Figure 17, where the IWS is set to 240. Note that the slight
drop in the frame rate at a forecast horizon of 120 is due to the
sharp increase in the standard error. Based on the results, we
select a forecast horizon of 60 to balance the above tradeoff.

Impact of Network Jitters. LoopTailor should ideally main-
tain a low non-network latency even when the network con-
dition is highly dynamic. Figure 18 shows the average non-
network latency under different network jitters (i.e., standard
deviations of network latencies). The results demonstrate the
robustness of LoopTailor under diverse network conditions:
with ≤10 ms network jitters, there is only negligible fluc-
tuation in the non-network latency (75-78 ms); even when
the network jitter exceeds 10 ms, the non-network latency
only increases marginally to 82 ms. The slight increase in the
non-network latency is caused by the inflation of VSync4/5-
induced latency, which is attributed to the elevated forecasting
error under highly fluctuating network conditions.

MCG-X

Google 
Android 
Emulator

DroidCloud

Input 
Injection

VSync1
Resource Handles

Shadow Contexts

Guest VM

Drawing APIs

Game Rendering

VSync2

Layer
Composition

Resource APIs

Context APIs

Guest VM Host

Resource APIs

Context APIs

Container

Drawing APIs

Drawing APIs

Virtual
Display

Frame
Encoding

…

…

Host

…

Rendering 
Backend

Projection

~0.0 ms

RPC

~0.3 ms

~0.3 ms

~2.5 ms

RPC

~1.2 ms

~0.3 ms

~1.8 ms

~0.5 ms
Client

VSync5

VSync4

VSync3

Input 
Injection

VSync1

Input 
Mapping

VSync1

Figure 19: Architectural comparison of X-MCG and other
representative MCG solutions. The numbers atop arrows
refer to the average latency overhead per game frame.

6 Discussion
Generalizability. VSync1∼5 are not specific to X-MCG; in
fact, it is impractical to disable them as they are necessitated
by the design of the Android system (on both cloud and client
sides) and the nature of constant-frame-rate video encoding
(see §3.2). Thus, the defects of X-MCG are common to every
Android- and video streaming-based MCG platform. Fig-
ure 19 illustrates a detailed comparison of the architectures of
X-MCG and other representative MCG solutions. As shown,
employing other solutions such as Google Android Emulator-
based (abbreviated as GAE-based) and DroidCloud [47] also
results in the five VSync events in the end-to-end graphics
pipeline. Given the above facts, we believe that our insights
and designs are widely applicable to other platforms.

The developers of X-MCG make a careful choice among
existing MCG solutions by conducting comprehensive bench-
marks on them. The experiment results reveal that the graph-
ics virtualization mechanism of Trinity introduces ∼0.3 ms
latency overhead per frame, 83%-94% less than other rep-
resentative solutions [33]. Additionally, Sunshine exhibits
12.6%-26.7% lower end-to-end latency compared to other
streaming tools [37, 59, 63] due to its efficient in-place frame
processing capabilities. However, these advanced virtualiza-
tion and frame processing techniques still need the VSync



mechanism for frame access synchronization with other stages
in the graphics pipeline. Worse still, the high efficiency of
rendering and frame processing of X-MCG may even amplify
the impact of VSync events on the interactive latency.

Although we were unable to scrutinize other mobile OSes
such as iOS, we believe our insights and design principles still
apply, given that VSync is a graphics primitive and that the
virtualization stack is widely used for the cloud gaming back-
end. In fact, the closed-source nature of iOS prompts many
MCG applications running on iOS to leverage virtualized
Android backends to stream mobile games [41]. Furthermore,
iOS also uses layer compositors (e.g., Core Animation), and
iOS cloud gaming backends must also use virtualization to
achieve resource multiplexing.

Application scope. MCG platforms generally focus on en-
abling users with middle/low-end devices to smoothly play
graphics-demanding mobile games. For budget reasons, the
refresh rates of such devices are typically fixed and limited,
allowing LoopTailor to fully exploit its capability to opti-
mize the interactive latency for mainstream MCG users. For
high-end user devices with adaptive/high refresh rates, things
are different for VSync5 as the intervals between adjacent
VSync5 events become variable/short.4 In such cases, only
part of RVC (i.e., Synergetic VSync Alignment for VSync1) is
less effective. Other LoopTailor components are still effective,
as VSync1∼4 are not on client devices.

7 Related Work
Cloud Gaming Systems. Based on where rendering instruc-
tions are executed, cloud gaming systems can be classified
into two categories: host-rending and client-rendering. Host-
rendering systems typically follow the thin-client architec-
ture [19]. It offloads computation-intensive tasks to cloud
servers, and livestreams rendered game frames as an encoded
video to thin clients for display. Many systems follow this
paradigm such as those proposed by the academia [37, 40, 47,
48,64,76,86,88] and the industry [4,21,55,58,61,75,78,79].

Client-rendering systems, such as Games@Large [57] and
LiveRender [49], intercept graphics instructions in the cloud
and send them (along with graphics data such as vertices and
textures) to the client for execution. While this paradigm can
deliver high-fidelity graphics and enable secure GPU comput-
ing [38], it requires powerful client devices and networks [77],
making it less attractive to low-end devices. Our work focuses
on optimizing the performance of host-rendering systems
given their dominant popularity.

Android in the Cloud. Landing Android onto cloud systems
has become an emerging research topic. Existing cloud solu-
tions typically run Android in virtual machines [7, 8, 91] or
containers [21, 47, 76]. Considering the generality of both the

4In Android, variable refresh rate is supported by switching between
multiple discrete refresh rates rather than continuously adapting refresh rates
(as of Sep. 2024) [1], and thus the client-side VSync5 always exists.

Game Rendering Interceptor and Remote VSync Coordinator,
we believe LoopTailor applies to most of the above systems.
These systems generally use API remoting [27] or device em-
ulation [65,69] for graphics virtualization, which can be laggy
and inefficient due to, for example, excessive guest-host inter-
actions [33]. To overcome such limitations, recent advances
such as Trinity [33] (upon which we built LoopTailor) and
vSoC [66] employ various techniques to reduce guest-host
interactions, leading to higher graphics performance.

Another body of works set out to adapt Android to cloud
environments. For instance, DroidCloud [47] enables Android
to render on off-system GPU pools; CARE [76] cloudifies
Android into a cloud-native system by streamlining Android
system services. Our work instead operates on the graphics
pipeline, and is orthogonal to the above research.

Latency Mitigation for Real-time Communication. Be-
yond VSync, there is a plethora of works on reducing the
latency (incurred by rendering, network, and video coding)
for real-time communication (RTC) systems such as MCG.
They investigate a wide range of latency optimization dimen-
sions including rendering acceleration [25, 68], network con-
gestion control [5,84], video coding [36,73,88], optimization
model/metric [35, 93, 94], and cloud architecture [46, 50, 70].
Regarding graphics-related latency, recent studies [45, 86]
attempt to reduce it by predicting video frames, but they may
fall short in real-world conditions due to the high random-
ness of user actions [45, 86]. Contrasting above efforts, our
work focuses on shortening the lengthy cloud-side graphics
pipeline through a new dimension of regulating VSync events.

8 Conclusion

Mobile cloud gaming, as a highly interactive immersive appli-
cation, faces new latency challenges due to its sophisticated
backend graphics processing. In this paper, we identify VSync
as a major contributor to the end-to-end interactive latency
overhead and show that a specialized design can effectively
minimize the VSync overhead. The result is a stable sub-
100 ms interactive latency, leading to an average reduction of
35% compared with those provided by state-of-the-art MCG
platforms. We believe that the ideas and key building blocks
of LoopTailor, such as in-place frame capture and multi-stage
latency prediction, have more profound implications to the de-
sign and implementation of emerging immersive applications,
especially those operating in the edge/cloud-based model.

Acknowledgments

We are grateful to our shepherd, Zili Meng, for his invaluable
feedback. We thank the anonymous reviewers for their insight-
ful comments. This work is supported in part by the National
Key R&D Program of China under grant 2022YFB4500703,
the National Natural Science Foundation of China under
grants 62332012 and 62472245, and the Ant Group.



References

[1] Ady Abraham. High Refresh Rate Rendering on
Android, 2020. https://android-developers.
googleblog.com/2020/04/high-refresh-rat
e-rendering-on-android.html.

[2] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman.
Real-Time Rendering, Fourth Edition. CRC Press, Au-
gust 2018.

[3] Ahmad Alhilal, Tristan Braud, Bo Han, and Pan Hui.
Nebula: Reliable Low-Latency Video Transmission for
Mobile Cloud Gaming. In Proc. of ACM WWW, pages
3407–3417, 2022.

[4] Amazon. Luna Cloud Gaming Service, 2024.
https://amazon.com/luna/landing-page?ref=
ln_social.

[5] Maryam Amiri, Hussein Al Osman, Shervin Shirmo-
hammadi, and Maha Abdallah. An SDN Controller for
Delay and Jitter Reduction in Cloud Gaming. In Proc.
of ACM MM, pages 1043–1046, 2015.

[6] Android Developers. Android Frame Pacing Library,
2023. https://developer.android.com/games/
sdk/frame-pacing.

[7] Android Developers. Cuttlefish Virtual Android De-
vices, 2023. https://source.android.com/doc
s/setup/create/cuttlefish.

[8] Android Developers. Google Android Emulator,
2023. https://developer.android.com/studio
/run/emulator.

[9] Android Developers. Surface API, 2023.
https://developer.android.com/referenc
e/android/view/Surface.

[10] Android Developers. SurfaceFlinger and WindowMan-
ager, 2023. https://source.android.com/docs/
core/graphics/surfaceflinger-windowmanag
er.

[11] Android Developers. Android Open Source Project,
2024. https://source.android.com/.

[12] Android Developers. BufferQueue and Gralloc,
2024. https://source.android.com/docs/core
/graphics/arch-bq-gralloc.

[13] Android Developers. Hardware Composer HAL,
2024. https://source.android.com/docs/core
/graphics/implement-hwc.

[14] Android Developers. Layers and Displays, 2024.
https://source.android.com/docs/core/gra
phics/layers-displays.

[15] Android Developers. Media Projection API,
2024. https://developer.android.com/guide/
topics/large-screens/media-projection.

[16] Android Developers. OpenGL ES Overview,
2024. https://developer.android.com/develo
p/ui/views/graphics/opengl/about-opengl.

[17] Android Developers. Screen Capturing and Sharing,
2024. https://developer.android.com/about/
versions/lollipop/android-5.0.

[18] Android Developers. The VSync Mechanism,
2024. https://source.android.com/docs/core
/graphics/implement-vsync.

[19] Ricardo A. Baratto, Leonard N. Kim, and Jason Nieh.
THINC: A Virtual Display Architecture for Thin-Client
Computing. In Proc. of ACM SOSP, pages 277–290,
2005.

[20] Boosteroid. Boosteroid Cloud Gaming, 2024. https:
//boosteroid.com/.

[21] Canonical. Anbox Cloud - Scalable Android in the
Cloud, 2024. https://anbox-cloud.io.

[22] Qasim M. Chaudhari, Erchin Serpedin, and Khalid
Qaraqe. On Maximum Likelihood Estimation of Clock
Offset and Skew in Networks With Exponential Delays.
IEEE Transactions on Signal Processing, 56:1685–1697,
2008.

[23] Hao Chen, Xu Zhang, Yiling Xu, Ju Ren, Jingtao Fan,
Zhan Ma, and Wenjun Zhang. T-Gaming: A Cost-
Efficient Cloud Gaming System at Scale. IEEE Trans-
actions on Parallel and Distributed Systems, 30:2849–
2865, 2019.

[24] China Mobile and ZTE. Powered by Sa: 5g Mec-Based
Cloud Game Innovation Practice. Technical report,
2020.

[25] Shen Ciao, Zhongyue Guan, Qianxi Liu, Li-Yi Wei, and
Zeyu Wang. Ciallo: GPU-Accelerated Rendering of
Vector Brush Strokes. In Proc. of ACM SIGGRAPH,
pages 1–11, 2024.

[26] CloudMoon. CloudMoon - Cloud Gaming, 2024.
https://play.google.com/store/apps/detai
ls?id=com.nianwei.cloudphone&hl=en_US.

[27] Micah Dowty and Jeremy Sugerman. GPU Virtual-
ization on VMware’s Hosted I/O Architecture. ACM
SIGOPS Operating Systems Review, 43:73–82, 2009.

https://android-developers.googleblog.com/2020/04/high-refresh-rate-rendering-on-android.html
https://android-developers.googleblog.com/2020/04/high-refresh-rate-rendering-on-android.html
https://android-developers.googleblog.com/2020/04/high-refresh-rate-rendering-on-android.html
https://amazon.com/luna/landing-page?ref=ln_social
https://amazon.com/luna/landing-page?ref=ln_social
https://amazon.com/luna/landing-page?ref=ln_social
https://developer.android.com/games/sdk/frame-pacing
https://developer.android.com/games/sdk/frame-pacing
https://source.android.com/docs/setup/create/cuttlefish
https://source.android.com/docs/setup/create/cuttlefish
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://developer.android.com/reference/android/view/Surface
https://developer.android.com/reference/android/view/Surface
https://developer.android.com/reference/android/view/Surface
https://source.android.com/docs/core/graphics/surfaceflinger-windowmanager
https://source.android.com/docs/core/graphics/surfaceflinger-windowmanager
https://source.android.com/docs/core/graphics/surfaceflinger-windowmanager
https://source.android.com/
https://source.android.com/docs/core/graphics/arch-bq-gralloc
https://source.android.com/docs/core/graphics/arch-bq-gralloc
https://source.android.com/docs/core/graphics/implement-hwc
https://source.android.com/docs/core/graphics/implement-hwc
https://source.android.com/docs/core/graphics/layers-displays
https://source.android.com/docs/core/graphics/layers-displays
https://source.android.com/docs/core/graphics/layers-displays
https://developer.android.com/guide/topics/large-screens/media-projection
https://developer.android.com/guide/topics/large-screens/media-projection
https://developer.android.com/develop/ui/views/graphics/opengl/about-opengl
https://developer.android.com/develop/ui/views/graphics/opengl/about-opengl
https://developer.android.com/about/versions/lollipop/android-5.0
https://developer.android.com/about/versions/lollipop/android-5.0
https://source.android.com/docs/core/graphics/implement-vsync
https://source.android.com/docs/core/graphics/implement-vsync
https://boosteroid.com/
https://boosteroid.com/
https://anbox-cloud.io
https://play.google.com/store/apps/details?id=com.nianwei.cloudphone&hl=en_US
https://play.google.com/store/apps/details?id=com.nianwei.cloudphone&hl=en_US
https://play.google.com/store/apps/details?id=com.nianwei.cloudphone&hl=en_US


[28] Epic Games. Frame Pacing for Mobile Devices, 2024.
https://docs.unrealengine.com/5.3/en-US/
frame-pacing-for-mobile-devices-in-unrea
l-engine/.

[29] Epic Games. Unreal Engine Official Website, 2024.
https://www.unrealengine.com/en-US.

[30] Richard Farebrother. L1-Norm and L∞-Norm Estima-
tion: An Introduction to the Least Absolute Residuals,
the Minimax Absolute Residual and Related Fitting Pro-
cedures. Springer Science & Business Media, April
2013.

[31] Ilja T Feldstein and Stephen R Ellis. A Simple Video-
based Technique for Measuring Latency in Virtual Real-
ity or Teleoperation. IEEE Transactions on Visualization
and Computer Graphics, 27(9):3611–3625, 2020.

[32] James D. Foley. Computer Graphics: Principles and
Practice. Addison-Wesley Professional, 1996.

[33] Di Gao, Hao Lin, Zhenhua Li, Chengen Huang, Yunhao
Liu, Feng Qian, Liangyi Gong, and Tianyin Xu. Trinity:
High-Performance Mobile Emulation through Graphics
Projection. In Proc. of USENIX OSDI, pages 285–301,
2022.

[34] Sumanta Guha. Computer Graphics Through
OpenGL®: From Theory to Experiments. CRC Press,
December 2018.

[35] Pouya Hamadanian, Doug Gallatin, Mohammad Al-
izadeh, and Krishna Chintalapudi. Ekho: Synchronizing
Cloud Gaming Media across Multiple Endpoints. In
Proc. of ACM SIGCOMM, pages 533–549, 2023.

[36] Luke Hsiao, Brooke Krajancich, Philip Levis, Gordon
Wetzstein, and Keith Winstein. Towards Retina-quality
VR Video Streaming: 15ms Could Save You 80% of
Your Bandwidth. ACM SIGCOMM Computer Commu-
nication Review, 52(1):10–19, 2022.

[37] Chun-Ying Huang, Cheng-Hsin Hsu, Yu-Chun Chang,
and Kuan-Ta Chen. GamingAnywhere: An Open Cloud
Gaming System. In Proc. of ACM MMSys, pages 36–47,
2013.

[38] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely,
Yige Hu, Christopher J. Rossbach, and Emmett Witchel.
Telekine: Secure Computing with Cloud GPUs. In Proc.
of USENIX NSDI, pages 817–833, 2020.

[39] Rob J. Hyndman, Roman A. Ahmed, George Athana-
sopoulos, and Han Lin Shang. Optimal Combination
Forecasts for Hierarchical Time Series. Computational
Statistics & Data Analysis, 55:2579–2589, 2011.

[40] Iryanto Jaya, Yusen Li, and Wentong Cai. Improving
Scalability, Sustainability and Availability via Workload
Distribution in Edge-Cloud Gaming. In Proc. of ACM
MM, pages 2987–2995, 2022.

[41] JoyArk. JoyArk – Explore and Play Games Instantly,
2024. https://joyark.com/.

[42] Viktor Kelkkanen, Markus Fiedler, and David Lin-
dero. Synchronous Remote Rendering for VR. In-
ternational Journal of Computer Games Technology,
2021(1):6676644, 2021.

[43] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo,
Piotr Dollár, and Ross Girshick. Segment Anything.
arXiv:2304.02643, 2023.

[44] David Large and James Farmer. Modern Cable Televi-
sion Technology. Elsevier, 2004.

[45] Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes
Kopf, Yury Degtyarev, Sergey Grizan, Alec Wolman,
and Jason Flinn. Outatime: Using Speculation to Enable
Low-Latency Continuous Interaction for Mobile Cloud
Gaming. In Proc. of ACM MobiSys, pages 151–165,
2015.

[46] Jinyang Li, Zhenyu Li, Ri Lu, Kai Xiao, Songlin
Li, Jufeng Chen, Jingyu Yang, Chunli Zong, Aiyun
Chen, Qinghua Wu, Chen Sun, Gareth Tyson, and
Hongqiang Harry Liu. LiveNet: A Low-Latency Video
Transport Network for Large-Scale Live Streaming. In
Proc. of ACM SIGCOMM, pages 812–825, 2022.

[47] Linsheng Li, Bin Yang, Cathy Bao, Shuo Liu, Randy
Xu, Yong Yao, Mohammad R. Haghighat, Jerry W. Hu,
Shoumeng Yan, and Zhengwei Qi. DroidCloud: Scal-
able High Density AndroidTM Cloud Rendering. In
Proc. of ACM MM, pages 3348–3356, 2020.

[48] Yusen Li, Haoyuan Liu, Xiwei Wang, Lingjun Pu, Trent
Marbach, Shanjiang Tang, Gang Wang, and Xiaoguang
Liu. Themis: Efficient and Adaptive Resource Partition-
ing for Reducing Response Delay in Cloud Gaming. In
Proc. of ACM MM, pages 491–499, 2019.

[49] Li Lin, Xiaofei Liao, Guang Tan, Hai Jin, Xiaobin Yang,
Wei Zhang, and Bo Li. LiveRender: A Cloud Gaming
System Based on Compressed Graphics Streaming. In
Proc. of ACM MM, pages 347–356, 2014.

[50] Yuhua Lin and Haiying Shen. CloudFog: Leveraging
Fog to Extend Cloud Gaming for Thin-Client MMOG
with High Quality of Service. IEEE Transactions on
Parallel and Distributed Systems, 28:431–445, 2017.

https://docs.unrealengine.com/5.3/en-US/frame-pacing-for-mobile-devices-in-unreal-engine/
https://docs.unrealengine.com/5.3/en-US/frame-pacing-for-mobile-devices-in-unreal-engine/
https://docs.unrealengine.com/5.3/en-US/frame-pacing-for-mobile-devices-in-unreal-engine/
https://www.unrealengine.com/en-US
https://www.unrealengine.com/en-US
https://joyark.com/


[51] LizardByte. Sunshine Official Website, 2023.
https://docs.lizardbyte.dev/projects/sun
shine/en/latest/about/overview.html.

[52] Wei-Yin Loh. Classification and Regression Trees.
WIREs Data Mining and Knowledge Discovery, 1:14–
23, 2011.

[53] Sanjay Madhav. Game Programming Algorithms and
Techniques: A Platform-Agnostic Approach. Pearson
Education, 2014.

[54] Zili Meng, Tingfeng Wang, Yixin Shen, Bo Wang, Ming-
wei Xu, Rui Han, Honghao Liu, Venkat Arun, Hongxin
Hu, and Xue Wei. Enabling High Quality Real-Time
Communications with Adaptive Frame-Rate. In Proc.
of USENIX NSDI, 2023.

[55] Microsoft. Xbox Cloud Gaming, 2024. https://ww
w.xbox.com/en-US/cloud-gaming.

[56] S.B. Moon, P. Skelly, and D. Towsley. Estimation and
Removal of Clock Skew from Network Delay Measure-
ments. In Proc. of IEEE INFOCOM, pages 227–234
vol.1, 1999.

[57] Itay Nave, Haggai David, Alex Shani, Yoav Tzruya,
Arto Laikari, Peter Eisert, and Philipp Fechteler.
Games@large Graphics Streaming Architecture. In
Proc. of IEEE ISCE, pages 1–4, 2008.

[58] Netease. Netease Cloud Gaming, 2024. https://cg
.163.com/.

[59] NVIDIA. NVIDIA GameStream, 2022. https://ww
w.nvidia.com/en-us/support/gamestream/.

[60] NVIDIA. NVENC Video Codec SDK, 2024. https:
//developer.nvidia.com/video-codec-sdk.

[61] NVIDIA. NVIDIA GeForce NOW, 2024. https:
//www.nvidia.com/en-us/geforce-now/.

[62] NVIDIA DOCS HUB. Single Root IO Virtualization
(SR-IOV), 2024. https://docs.nvidia.com/do
ca/sdk/single+root+io+virtualization+(sr
-iov)/index.html.

[63] Open-Stream Developers. Open-Stream Game Stream-
ing Platform, 2024. https://open-stream.net/.

[64] Mikko Pitkänen, Marko Viitanen, Alexandre Mercat,
and Jarno Vanne. Remote VR Gaming on Mobile De-
vices. In Proc. of ACM MM, pages 2191–2193, 2019.

[65] Qemu Developers. Documentation of Virtio-Gpu,
2023. https://www.qemu.org/docs/master/sys
tem/devices/virtio-gpu.html.

[66] Jiaxing Qiu, Zijie Zhou, Yang Li, Zhenhua Li, Feng
Qian, Hao Lin, Di Gao, Haitao Su, Xin Miao, Yunhao
Liu, and Tianyin Xu. vSoC: Efficient Virtual System-
on-Chip on Heterogeneous Hardware. In Proc. of ACM
SOSP, 2024.

[67] Sai Swaroop Ratakonda and Sreela Sasi. Seasonal Trend
Analysis on Multi-Variate Time Series Data. In Proc of
IEEE ICDSE, pages 1–6, 2018.

[68] Eric Risser. Rendering 3D Volumes Using Per-pixel
Displacement Mapping. In Proc. of ACM SIGGRAPH
Symposium on Video Games, pages 81–87, 2007.

[69] Rusty Russell. Virtio: Towards a de-Facto Standard for
Virtual I/O Devices. ACM SIGOPS Operating Systems
Review, 42:95–103, 2008.

[70] William Sentosa, Balakrishnan Chandrasekaran,
P. Brighten Godfrey, Haitham Hassanieh, and Bruce
Maggs. DChannel: Accelerating Mobile Applications
With Parallel High-Bandwidth and Low-Latency
Channels. In Proc. of USENIX NSDI, pages 419–436,
2023.

[71] Alexander Shapiro. Monte Carlo Sampling Methods. In
Handbooks in Operations Research and Management
Science, volume 10 of Stochastic Programming, pages
353–425. Elsevier, January 2003.

[72] Ryan Shea, Di Fu, and Jiangchuan Liu. Cloud Gaming:
Understanding the Support From Advanced Virtualiza-
tion and Hardware. IEEE Transactions on Circuits and
Systems for Video Technology, 25:2026–2037, 2015.

[73] Shu Shi, Cheng-Hsin Hsu, Klara Nahrstedt, and Roy
Campbell. Using Graphics Rendering Contexts to En-
hance the Real-Time Video Coding for Mobile Cloud
Gaming. In Proc. of ACM MM, pages 103–112, 2011.

[74] W. C. Siu. Multimedia Information Retrieval and Man-
agement: Technological Fundamentals and Applica-
tions. Springer Science & Business Media, January
2003.

[75] Sony. PlayStation Plus Cloud Gaming, 2024.
https://www.playstation.com/en-us/games/
playstation-plus-essential-1-month-subsc
ription.

[76] Dongjie Tang, Cathy Bao, Yong Yao, Chao Xie, Qiming
Shi, Marc Mao, Randy Xu, Linsheng Li, Mohammad R.
Haghighat, Zhengwei Qi, and Haibing Guan. CARE:
Cloudified Android OSes on the Cloud Rendering. In
Proc. of ACM MM, pages 4582–4590, 2021.

[77] Dongjie Tang, Yun Wang, Linsheng Li, Jiacheng Ma,
Xue Liu, Zhengwei Qi, and Haibing Guan. gRemote:
API-Forwarding Powered Cloud Rendering. In Proc. of
ACM HPDC, pages 197–201, 2020.

https://docs.lizardbyte.dev/projects/sunshine/en/latest/about/overview.html
https://docs.lizardbyte.dev/projects/sunshine/en/latest/about/overview.html
https://docs.lizardbyte.dev/projects/sunshine/en/latest/about/overview.html
https://www.xbox.com/en-US/cloud-gaming
https://www.xbox.com/en-US/cloud-gaming
https://cg.163.com/
https://cg.163.com/
https://www.nvidia.com/en-us/support/gamestream/
https://www.nvidia.com/en-us/support/gamestream/
https://developer.nvidia.com/video-codec-sdk
https://developer.nvidia.com/video-codec-sdk
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-us/geforce-now/
https://docs.nvidia.com/doca/sdk/single+root+io+virtualization+(sr-iov)/index.html
https://docs.nvidia.com/doca/sdk/single+root+io+virtualization+(sr-iov)/index.html
https://docs.nvidia.com/doca/sdk/single+root+io+virtualization+(sr-iov)/index.html
https://open-stream.net/
https://www.qemu.org/docs/master/system/devices/virtio-gpu.html
https://www.qemu.org/docs/master/system/devices/virtio-gpu.html
https://www.playstation.com/en-us/games/playstation-plus-essential-1-month-subscription
https://www.playstation.com/en-us/games/playstation-plus-essential-1-month-subscription
https://www.playstation.com/en-us/games/playstation-plus-essential-1-month-subscription
https://www.playstation.com/en-us/games/playstation-plus-essential-1-month-subscription


[78] Tencent. Tencent Pioneer, 2024. https://gamer.qq
.com/.

[79] Tencent. Tencent Start, 2024. https://start.qq.c
om.

[80] Tencent Cloud. Tencent Cloud Gaming Product Doc-
umentation, 2023. https://cloud.tencent.com/
document/product/1162/46097.

[81] Unity Technologies. Unity Frame Pacing for Android,
2024. https://docs.unity3d.com/ScriptRefer
ence/Application-targetFrameRate.html.

[82] Unity Technologies. Unity Official Website, 2024.
https://unity.com.

[83] Alexander Van’t Hof, Hani Jamjoom, Jason Nieh, and
Dan Williams. Flux: Multi-Surface Computing in An-
droid. In Proc. of ACM EuroSys, pages 1–17, 2015.

[84] Shibo Wang, Shusen Yang, Xiao Kong, Chenglei Wu,
Longwei Jiang, Chenren Xu, Cong Zhao, Xuesong Yang,
Jianjun Xiao, Xin Liu, Changxi Zheng, Jing Wang, and
Honghao Liu. Pudica: Toward Near-Zero Queuing De-
lay in Congestion Control for Cloud Gaming. In Proc.
of USENIX NSDI, pages 113–129, 2024.

[85] Shanika L. Wickramasuriya, George Athanasopoulos,
and Rob J. Hyndman. Optimal Forecast Reconcilia-
tion for Hierarchical and Grouped Time Series Through
Trace Minimization. Journal of the American Statistical
Association, 114:804–819, 2019.

[86] Jiangkai Wu, Yu Guan, Qi Mao, Yong Cui, Zongming
Guo, and Xinggong Zhang. ZGaming: Zero-Latency 3D
Cloud Gaming by Image Prediction. In Proc. of ACM
SIGCOMM, pages 710–723, 2023.

[87] XPosed Developers. Xposed Framework API,
2023. https://api.xposed.info/reference/pa
ckages.html.

[88] Lingfeng Xu, Xun Guo, Yan Lu, Shipeng Li, Oscar C.
Au, and Lu Fang. A Low Latency Cloud Gaming System
Using Edge Preserved Image Homography. In Proc. of
IEEE ICME, pages 1–6, 2014.

[89] Qiang Xu, Sanjeev Mehrotra, Zhuoqing Mao, and Jin
Li. PROTEUS: Network Performance Forecast for Real-
Time, Interactive Mobile Applications. In Proc. of ACM
MobiSys, pages 347–360, 2013.

[90] Jinyu Yang, Mingqi Gao, Zhe Li, Shang Gao, Fangjing
Wang, and Feng Zheng. Track Anything: Segment Any-
thing Meets Videos. arXiv.2304.11968, 2023.

[91] Qifan Yang, Zhenhua Li, Yunhao Liu, Hai Long, Yuan-
chao Huang, Jiaming He, Tianyin Xu, and Ennan Zhai.
Mobile Gaming on Personal Computers with Direct An-
droid Emulation. In Proc. of ACM MobiCom, pages
1–15, 2019.

[92] Zongxin Yang and Yi Yang. Decoupling Features in Hi-
erarchical Propagation for Video Object Segmentation.
Advances in Neural Information Processing Systems,
35:36324–36336, 2022.

[93] Roy D. Yates, Mehrnaz Tavan, Yi Hu, and Dipankar
Raychaudhuri. Timely Cloud Gaming. In Proc. of IEEE
INFOCOM, pages 1–9, 2017.

[94] Yuhan Zhou, Tingfeng Wang, Liying Wang, Nian Wen,
Rui Han, Jing Wang, Chenglei Wu, Jiafeng Chen, Long-
wei Jiang, Shibo Wang, Honghao Liu, and Chenren Xu.
AUGUR: Practical Mobile Multipath Transport Service
for Low Tail Latency in Real-Time Streaming. In Proc.
of USENIX NSDI, pages 1901–1916, 2024.

https://gamer.qq.com/
https://gamer.qq.com/
https://start.qq.com
https://start.qq.com
https://cloud.tencent.com/document/product/1162/46097
https://cloud.tencent.com/document/product/1162/46097
https://docs.unity3d.com/ScriptReference/Application-targetFrameRate.html
https://docs.unity3d.com/ScriptReference/Application-targetFrameRate.html
https://unity.com
https://unity.com
https://api.xposed.info/reference/packages.html
https://api.xposed.info/reference/packages.html

	Introduction
	Measurement Study in the Wild
	Measurement Methodology
	Measurement Results

	Diagnosing the Undesirable Interactive Latency of MCG
	Mobile Graphics Pipeline and VSync
	The Interactive Loop of X-MCG
	Root Cause Analysis

	System Design
	LoopTailor Overview
	Game Frame Interceptor (GFI)
	Remote VSync Coordinator (RVC)

	Evaluation
	Experimental Setup
	Overall Performance
	Contributions of Individual Modules
	Micro-benchmarks

	black Discussion
	Related Work
	Conclusion

